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1. OVERVIEW

The study reported here was conducted in response to a contract th ht

set the following objective: "Utilizi rI avail,1blo2 climatolo((i1',Il t']01i1d

property data bases from a representative select ion oi climates, doteY-

mine the information content in a series of simulated upper air ill situ

measurements of cloud presence along a path to provide for est imates (I

mesoscale cloud cover, tops, and bases from the earth's surtaco, to 8 km

above ground level."

The general context of the problem is a battlefield. T'e . cciI ic

scenario is a tactical target area 50 km across. The cloud robo is a

simple binary sensor, capable of reporting only ".1 am in cloud" or "I am

in clear air." Its reports are telemetered back to a ground "tat ion at

the rate of I liz. The sensor is carried aboard an automatically piloted

vehicle (APV) that is limited in range and speed but is capable of exe-

cuting a prescribed flight path. Its position is known at all times.

Figure 1. 1 illustrates the three ge-neral classes of sampling pat-

terns that were examined. In the first, the target volume is :;ampled

through a succession of horizontal patterns that are stepped in altitude,

each horizontal sample consisting of measurements taken alon(i a single

pass. The second pattern is identical, except. that the horizontal sample

is now taken along a flight path that is more than a single pass. The

third pattern consists of alternate ascents and descents in a tight p1i-

ral, the result beinq that each level is sampled in a pattern of widely

separated points.

To evaluate the "sampling accuracy" of these patterns, i.e., the ac-

curacy of inferences based on the samples, we adopted two independent ap-

proaches. The experimental approach was founded on a set of 132 actukal

cloud fields as observed from a Geostationary Operational Environmental a

.qatel lite (GOES) . Computer programs enabled simulated sampling p,ittcrn

to be flown through these fields. Analysis of these led to est imates of

the sampling accuracy of the various patterns. Detail,; of the ba!;ic c loud

fields and their collection are described in Appendix A.

In parallel, theoretical estimates of sampling accuracy wer, derived

from the binomial distribution. rhis; dit rihut ion is known to depict ac-

curately the statist ical propert it:; of ,c oI le ct iye of binary sam 4 e.

whic-h is what a ;ot of our yen/no cloud mieasurrmnenr i c i 'rien. The !c()e

7 [
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(a) Horizontal Pass

(b) Horizontal Pattern

(c) Verticil Pattern

Fiqure 1.1. The Three Classes of Samplinq Strategy.



comp !ication is that the binomial distribution i.s; valid only for col lec-

tives of independent samples, whereas the successive and nearby ooi ni

measurements in our scenario are assuredly not independent In ordor t,

retain use of the binomial disiribution, we introduce the concept of ar

independence fraction," which reduces the N aCtual points of a samtl'

to a statistically eouivalent sample consistini of N' independent ,ojiuts;.

Appendix B elaborate.q on the use of the binomial distrilution !-()I

our purpose, while Appendix C diCscVse ewlaIation of the indej ,[enco

f ract ion.

Besides the broad objective cited above, the contract Statement ol.

Work (SOW) asks that several pointed (aestions be answered for the cast'

that the samplinq runs are straight tine horizontal paths. Then, the

Statement asks whether the best estimates of cloud parameters are achieved

throuch this sampling mode or whether some alternate trajectory could

significantly reduce uncertainties in these estimates.

In Section 2 of this report, the accuracy of samplinq in horizon-

tal passes is evaluated, and its dependence on the lenoth of the pass

established. There also, the specific questions of the SOW are addressed

one by one.

Section 3 then examines the accuracy of samlino in hori:ontal pat-

terns other than straight passes and finds that, for a qiven sampl ino

length, certain patterns are more effective than a straiaht iass.

Section 4 treats the last of the 3 classes of samplino strateuv -

the "vertical" fiiqht t)attern that produces a configuration of isolated

point samples at each of the horizontal levels. Here it is found that,

in terms of the accuracy with which the areal cloud fraction can be in-

ferred, a pattern of relatively few, well-positioned points is the esuiv-

alent of a rather long samnlinq path. This is consistent with the esti-

mate of independence fraction ot a "continuous" horizontal sample, which

suqqests that the information content of a 10-km segment is no more than

that of its two end points.

Finally, in Section 5 the best of horizontal and vertical samplint,

patterns are competed in terms of time and fuel required for execut ion.

It is found that, for a given accuracy, the best horizontal strateqy

costs almost twice as much as the best vertical strategy. Clearly, the

waste of time and fuel resulting from the redundancy of information in

I'



horizontal sampling) more than com}peilsates :or the higier rate o: fuel

consumption entailed in the "pogo-stick" 1-light path of the vertical pat-

torn.

B~eside.; tile aforementioned advantage of tie vertical strategy, it is

vastly n<uperior to tile horizontal with respect to tixing cloud base and

top and, consequently, in recogjnizinq the existence of discrete layers.

This latter capability makes possible a confident answer to an important

question that can only be guessed at from horizontal samples -namely,

what is the overall cloud fraction when more than a single layer is pres-

ent ?

The contract SOW invited us, first, to work the overall problem as-

suming a horizontally homogeneous cloud field and, then, to consider and

evaluate the effects of inhomogeneity. However, neither our experimental

approach nor the theoretical was made simpler by an assumption of homo-

geneitv. Consequently, tile qeneral case was attacked from tile outset,

and the conclusions are valid without regard to deqree of homogeneity.

Nevertheless, Appendix D touches on the academic issue of sampling a ho-

mogeneous field and, additionally, discusses a realizable situation that

represents, in our view, the most troublesome form of inhomogeneity.

Sampling efficiency is found to depend on the climatological fre-

guency of cloud amount. What is relevant is cloudiness at the level

being sampled, not total cloudiness. It is the latter, unfortunately,

that is treated in standard climatological summaries. To qenerate the

special ized statistics required for our purpose, a model developed re-

cently by 1. I. Gringorten of the Air Force Geophysics Laboratory (AFGM.)

was employed.

Throuqhout the study, whether the sampling pattern is horizontal or

vertical, what is sampled is the "projected cloud fraction" or "earth

cover," in distinction to "sky cover," which is the fractional coverage

as seen from a point on the ground. However the SOW poses its questions

in terms of cloud cover. Hence, a means of converting from cloud frac-

tion to cloud cover is required and is dealt with in section 6. There

it i s found that the diI ferences detectable between tie two measures are

sm.ll relative to the scatter in our data, and we conclude that in oper-

ational practice it: is better to assume that sky cover is identical to

earth cover.

10
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SAIMPLlNk; IN HORIZONTAL PASSES

2.1 Accuracy of Cloud Amount Estimate vs. Length of Sampling Path.

The first of the specific problems posed by the contract Statement

oT Work (SOW) was: "Assume a straiqht line vehicle trajectory at a

qiven level through a cloud deck and determine the trade-offs between

jith length and uncertainty estimates in Lhe calculation of cloud cover."

We al.jproached this question both exlierimentally and theoretically.

2.1.1 The Experimental Answer.

The experimental basis of the entire study is 132 cloud fields ob-

served from a NOAA GOES satellite (National Oceanic and Atmospheric Ad-

ministration, Geostationary Operational Environmental Satellite). Details

of this data base are described in Appendix A. Out of the 132 cases, 50

were randomly selected and set aside as independent data to be used in

testinq any conclusions based on the "development sample" of 82 cases.

Each of the basic cloud fields is a rectangular array of binary

pixels - i.e., picture elements denoting only cloud or no-cloud - cover-

ing an area 100xl00 km on the earth's surface. The number of rows and

columns in the array varies with distance from the sub-satellite point,

but the average spacinq in our development sample is 1.23 km in the N-S

direction and 0.82 km in the E-W.

'To answer this first question of the SOW, passes of various lengths

from 10 to 100 km were simulated in the observed cloud fields. The pro-

cedure will be illustrated for the case of 60-km passes in a cloud field

centered over south central Tennessee on December 29, 1980 and observed

at local noon. On this occasion the lOOxlO0 km cloud array consisted of

84 rows and 125 columns, and the cloud fraction over the entire array,

denoted NA, was 0.444. Along each of the 209 lines of the array (rows

and columns together) 3 60-km passes were laid out symmetrically. The

c',,d traction, NJ,, for each of these 627 simulated passes was evaluated,

and a trequency distribution constructed. The result is shown in Table

2.1. From this distribution an accuracy index, denoted P(.l), was eval-

uated. P(.I) is defined as the fraction of the 627 values of NL falling

within 0.1 of 0.4 (NA rounded to nearest tenth). In the present case

P(.l) .530.

12



TABLE 2. 1 FREQUENCY DISTRIBUTION OF PASS CLOUD FRACTION, N7,.

NL (tenth) 0 1 2 3 4 5 6 7 8 9 10

Frequency (%) 1.2 2.8 7.3 11.0 18.9 23.1 17.5 11.1 5.1 1.5 U

The development sample of cloud tic]d. yielded 832 ;uuh v,')jue.;

P(.) . These were grouped according to value W' NA and then iverige(l.

The sample standard deviation was also evaluated !-()r each class con-

taininq more than 0 values of 1(.I)

All told, this procedure was used to generate statistics tor
simulated sampling passes of 6 lengths: 10, 20, 40, 60, 80, and 100 km.

The results are shown in Table 2.2. The strong dependence of I,(.I) on

NA is strikingly evident in Figure 2.1.

TABLE 2.2 MEAN SAMPLING ACCURACY, P(.1), AND STANDARD DEVIATION, a,

AS A FUNCTION OF PASS LENGTH AND AREAL CLOUD

FRACTION, NA.
10 km 20km 40 km 60km 80km 100 km

NA P(.1) (J P(.1) a P (.L-1) g P .
(tenths, "-...

0 .96 - .97 - .96 - .98 - .99 - .99 -

1 .88 .03 .88 .04 .90 .04 .92 .03 .94 .03 .95 .04

2 .24 .15 .35 .13 .47 .10 .54 .09 .61 .10 .70 .11

3 .21 .08 .31 .10 .43 .14 .54 .14 .58 .16 .64 .15

4 .17 .08 .25 .08 .35 .11 .45 .14 .53 .17 .61 .17

5 .17 .09 .26 .10 .35 .14 .42 .14 .51 .14 .56 .13

6 .17 .10 .24 .13 .33 .14 .42 .14 .51 .14 .60 .]4

7 .20 .05 .28 .09 .41 .12 .51 .15 .59 .15 .65 .19

8 .20 .06 .33 .09 .50 .08 .60 .11 .67 .12 .74 .12

9 .85 - .83 - .83 - .84 - .84 - .82 -

10 .99 - .99 - 1.00 - 1.00 - 1.00 - 1.00 -

Unwe ighted
Mean .46 .52 .59 .66 .71 .75

In view of this dependence, simple averaging ot I'(.1) across the

values of areal Fraction will not produce the correct value of samplii l

accuracy that can be expected on average when the particular samplinm

pi
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Fiqure 2.1. Samplinq Accuracy, P(.1), as a Function of

Areal Cloud Fraction for Three Pass Lenqths.
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mode is applied ol a day-to-day basis or randomly in time. Instead, the

averaging must be weighted by the climatological frequency of area] cloud

fraction at the level being sampled, which, of course, varies with loca-

tion and season. If the climatological frequency happens also to be U-

shaped, which is a common situation, the expected sampling accuracy can

be dramatically better than an unweighted average. This is illustrated

in Figure 2.2 which also depicts the trade-off between sampling pass

length and accuracy.

The climatological frequencies used in Figure 2.2 are included in

Table B-4 of Appendix B. The frequencies for Fulda are for cloudiness

in the altitude range 0-3,000 feet, for January, 1200-1400 hours local.

These data were derived by Lund using a technique devised by Gringorten.I

Strictly speaking, the Ft. Rucker data used in Figure 2.2 are not ip-

propriate since they relate to total sky cover, not to cloudiness at a

particular level. They were used, nevertheless, in order to demonstrate

the effect of a climatology that is not so strongly U-shaped.

We shall be using P(.l) throughout this report, but other investi-

gators have employed the standard error of estimate as their figure of

merit for sampling. No simple conversion exists between the two mea-

sures, but in Section 4 a relationship between 11(.1) and the standard

error of regression will be shown.

Figure 2.2 embodies the desired trade-off between path length and un-

certainty in the estimate of cloud fraction, but several underlying fea-

tures warrant emphasis:

A. The simulated passes were located in almost all possible

positions within the 10oxlO0 km cloud field. Consequently the values

of 1(.1) represent the expected accuracy of a pass that is randomly

positioned in the target area. In the next section we consider patterns

that are deliberately positioned relative to the target and find some

that are more accurate than random passes of the same length.

B. In order to accommodate the longer passes, it was necessary

to deal here with the entire 100xlOO km cloud field, rather than a luad-

rant, which is the size specified for the target area.

]. Grinqorten, I. 1., 1981: Climatic irobabilities of the vertical dis-
tribution of cloud cover. AFG,-TN (in press).
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2. 1.2 The Theoretical Answer.

If the airborne cloud sensor i s sampled at the l.ate of I lz, a or-

izontal pass yields a set of point s;amples separated by less than 50

meters. Appendix B outlines how the binomial distribution can be ue;(,d

to determine the accuracy with which area l cloud traction can bc (s't i-

mated from the cloud fraction observed on a set ot points. The ;ole

obstacle to immediate appliication of this theory in our scenario is t it

the theory catIs for Mutually independent samples whereas, due to the

spatial coherence of cloudiness, our closely spaced samples are not at

all likely to be statistically independent.

By-passinq this complication for the moment, let us examine how

sampling accuracy, 1(.1), depends on sample size. The data plotted in

Ficure 2.3(A) for samples of 5, 10, 15, and 20 independent points were

derived according to the procedure of Appendix B. Just like the experi-

mental values of P(.1), the theoretical values are sensitive to areal

cloud fraction. Hence, Figure 2.3(A) displays averages of P(.1) weighted

by the same climatoloqies used in the preceding paragraph. Thus, Fiq-

ure 2.2 and Figure 2.3(A) are fully analoqous and could be directly com-

pared were it not for the difference in abscissas: "sample length" in

one case, "number of points" in the other.

To rectify this incompatibility we invoke the concept of "indepen-

dence length" introduced in Appendix :. This is the distance of sepal-

ation that is sufficient to insure that cloud samples are statisticaIlly

independent. The average value of this length evaluated on our develop-

ment sample of data is 12.33 km. This value is used to convert the sam-

ple size (number of points) in Figure 2.3(A) into an equivalent lenoth

of samplin pass. In Fiqure 2. 3(B) the re,;uIts of thi. ; conversion are

plotted, together with the points of Figure 2.2.

Figure 2.3(1) offers an extended view of the trade-off between

pass length and sampling accuracy and reveil, a compaitibilit y between

the experimental and theoretical values of- (-.-)

2.1. Predict ive Value of the Sample, Autocorrelation.

Accordinq to preceding paragraths, the accuracy of an inierred value

(t treal 'd ol traclt ion depends on the equiv ilent number of indel ndrid,,nt

, i nit in th,, linear ;imple, and thi!- number depends on the "inO er'ienice
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length." It is reasonable to expect that the iIIdejIendeIice Im'11,-ih ao11,

therefore, the intrinsic sampling accuracy vary in value from day tt,

day. Although the independence length is evaluated empirically in

Appendix C, it can be formulated theoretically, and the sami u auto-

correlation function plays a key role in this formulation.

This line of reasoning led to ,n experiment to test whetler the

areal cloud fraction can be more accurately dotermined it hoth th, I-I.i

autocorrelation coefficient of the sam]'lu p.i:;s a11d it; cl)',, I t,,,t 1,1

are used as predictors.

Each of the 82 observed cloud fields was subdivided into ')0x',)1 km

quadrants. For each row and each column ot every quadrint, the c owld

fraction and the I-lag autocorrelation, flI were eva Iuated - ). so, f*lii

areal cloud fraction for the quadrant. The same was done tor th. ttill

100xlOO km area. Altogether, the result was more than 34,0tOu pai..s )e,

line and areal cloud fractions, together with values of o I fol the 1111(,.

These pairs were stratified by value of o into 4 classes: less th,itn

0.5, 0.5-0.9, greater than 0.9, and all values. For each class ot e I

and for each value of linear cloud fraction, the distribution ')I alcra

cloud fraction was determined, along with a variety of statist ics.

Figure 2.4 shows how the mean areal cloud frctLion, NA, varis

with the linear fraction, NL, for the 4 classes of p I* Table 2. show.

how the average sampling accuracy, P(.1), varies amono the class(. In

both instances, the variation with class is no more than might be expect-

ed as a sampling fluctuation. We conclude, therefore, that the predict-

ability of NA from NL is negligibly enhanced by knowledge of

2.2 Optimum Number of Levels to Sample.

The second problem raised by the Statement of Work was: "Determine

the optimum number of levels which the detector should traverse, coniq!-

tent with restrictions in vehicle rankle, in order to characterize aea1

cloud coverage."

The crux of the matter here is to strike the best compromise be-

tweet accuracy or cloud amount at each level and a,,;surince tht no 1,no ,lye

goes undetected. T'e former is best served by maximizii;nt th,, pa-n,0 1t

at each level, the latter by maximizing the number of level:; s amp led.

I)I
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TABLE 2. 3 MEAN SAMPLING ACCURACY, P(.1), AS A FUNCTION OF LINEAR

CLOUD FRACTION, NL, FOR VARIOUS CLASSES OF THE i-LAG

AUTOCORRELATION, p1. OF THE LINE SAMPLE.

P(.l)

NL

(tenths) < 0.5 0.5 < 0.9 ] 0.9 All p

0 .66 .63 * .76

1 .66 .71 .60 .68

2 .70 .66 .78 .74

3 65 .72 .78 .71

4 .73 67 .47 .u6

5 .69 .59 .65 .61

6 .73 .60 .45 .61

7 .69 .67 .71 .68

8 .63 .65 .76 .65

9 .57 .66 .54 .61

10 .55 .66 * .69

Average .66 .66 .64 .67

In the absence ot foreknowledge as to the types ot clouds likely in

the target area, the best strategy is to fly passes no lonqer than 10 km

and to sample as many levels as possible, uniformly distributed within the

altitude ranqe of prime operational interest. The reasons are the fol-

lowing:

A. As shown in Figure 2.2, samplinq accuracy improves only

slowly with pass lenqth, particularly in climates like that of Fulda.

B. An inference of areal cloud coverage is damaged far more

by failure to detect a layer altogether than by a degraded est imate ol

its amount.

C. The frequency of (loud occurrence is typically i weak and

quasi-monotonic funu-tion of altitude.

An attempt could be made to quantify this solution, but we 1hone not

to because we doubt that there is a "good" answer for the cane of horizon-

al sampling and, more important, because the problem does not even exi .t,

for a distinct ly superior ;ami lir q  m(Xle that is t reatt'd it) Sect ions .1 '1nd 5.
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2.3 Uncertainty of Tops and Bases.

The third specific question posed by the Statement of Work was:

"Determine the uncertainty in the estimation of tops and bases given

measurements on a straight line trajectory at multiple flight levels."

In the given circumstances, the uncertainty in estimate of the

top/base of a cloud layer is half the distance between sampling levels.

A cloud top/base would be declared to exist whenever cloud is detected

on one pass but not on the next hiqher/lower pass. To first approxi-

mation, the median position for the boundary is the midpoint between

the two sampling levels.

A pedantic refinement of this estimate would take account of the

fact that whereas the existence of cloud at the one level is 100% cer-

tain, it is less than dead certain that the other level is clear. The

degree of uncertainty depends on the length of sampling pass and can be

estimated by means described in Section 2.1. This would lead to biasinq

the median estimate of the boundary altitude toward the level at which

no cloud was detected.

Again, it is fortunate that this problem evaporates in the alter-

native sampling strategy recommended in Section 5.
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3. SAMPLING IN HORIZONTAL PATTERNS

The averages of sampling accuracy presented in Section 2.1.1 are

based on all possible locations of passes, which include, for the

100xl00 km area, passes that are as remote as 50 km from the "target."

Consequently, as previously noted, the findings of that section char-

acterize the performance expected of sampling on horizontal passes

that are randomly positioned in the target area. It is reasonable to

expect that centrally located passes might be more representative of

the area. Also, for a fixed allocation of fuel to sample a level, it

might be more efficient to spend this on several short passes rather

than in a single long pass across the area. With such thouqhts in

mind, we designed a series of experiments on the observed cloud fields

to test whether sampling in a prescribed horizontal pattern is more

efficient than the same distance of sampling in a pass that is randomly

located in the target area.

The patterns tested are shown in Figure 3.1. The results to be

quoted for configurations #1, 2, and 3 combine the row-patterns illus-

trated here and the analogous column-patterns which are not shown. In

all cases the area sampled is 50x50 km. The sampling length is 100 km

for all patterns except for #1 whose length is 150 km. Except for the

closed pattern of #5, the total flight path would have to be longer

than the sampling path in order to link the passes. In configurations

#1 and #3 the sampling passes subdivide the area respectively into 4

and 3 equal parts. #2 is an example of "equal-area" sampling, which

will also play a key role in Section 4. To construct #2, the area was

first divided into halves; then a sampling pass was made through the

middle of each half. The square sampling pattern in #5 measures 25x25

km.

For the test, the linear cloud fraction was measured for each of

the 8 configurations for all 4 quadrants of each of the 82 100xl00 km

cloud fields. (There are 8 configurations, rather than 5, because the

row and column variants of numbers 1, 2, and 3 were treated separately

at this stage.) Thus, for each configuration there were 328 pairs of

linear and areal cloud tractions. These were stratified according to

linear fraction in tenths, and a frequency count was made for the areal

fraction. An example of the resulting matrix is shown in Table 3.1.

2 1
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Fiqure 3.1. Horizontal Samplinq Patterns.

(Dashed Lines).
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TABLE 3. 1 FREQUENCY (L) oF ADEAL, CLOUt) fRA ICTION, NA, AND

SAMPLING ACCURACY, P (. 1) , AS A FUN('TIUN ()' I,1NEAR

(CLOUD FRACTION, NJ,, FOR CONI'GURATION NO. .

N IS THE NUMBER OF CASES.

NA 0111
L 0 1 2 3 4 5 6 7 8 9 10 N P(.I)

0 65 28 7 0 0 0 0 0 0 U 0 4 3T .

1 5 47 34 11 3 0 0 0 0 0 0 38 .86

2 0 11 40 40 9 0 U 0 0 0 0 35 .91

3 0 3 1 R 41 38 0 0 0 0 0 0 34 .97

4 0 0 0 17 38 38 7 0 0 0 0 29 93

5 0 0 0 16 26 32 21 5 0 0 0 19 79

6 0 0 0 0 12 21 39 24 3 0 0 33 .84

7 0 0 0 0 3 6 29 55 6 0 0 31 .90

8 0 0 0 0 0 0 13, 33 46 8 0 24 .87

9 0 0 0 0 0 0 5 5 35 50 5 20 .90

10 0 C' 0 0 ) U 0 S50 41 22; .91

AVERAGE . 892

(Because of roundinq to integral value,S of percent, thei, 1,;,-in, *s

not always sum to 100.)

From these distributions the samplinq accuracy, P(.1) , wis evauated

for the 11 values 0! lineaz fraction, and these were theii averaqed

(without weiqhtinq for -limatoloqical frequency). Fin,ill y, tile row

and column results for confiqurations ;;1, 2, and , wet, %,verj,:ed.

The final results are displayed in Table 1.2. The best ,,'curac:l

is achieved by pattern 41, but it is 5U, lonqer than the othel.s. ,m,,:

the 100 km patterns, #2 is the best. As previoisly noted, it is tile

equal-area pattern. In Section 4 it will be seen that equal-area con-

t iurations are the most efficient lot fpoint .,amj I ini also.

,(ccul ate than 4 2 or -3, but it is more ecenor i a i t tI .

TABLE 3.2 AVERAGE SAMPlING ACCURACY, P (. I) , OF 10RIZ ONTAI,

PATTERNS.

(Configur'ations 1, 2, and 3 include passes ,tlono

columns as well as the row patterns shown in
Fiqure 3.1.)

CONFIGURATION # LENGTH -(.1)

1 150 km .972

2 100 .960

3 lo) . o 15

4 In Mt ,
-) 100F 8 F),



As . m:eculated in the introdu,:tion to this section, all of the pat-

terns here are more effective for samplinq than the random passes treat-

ed in Section 2. The unweighted average of P(.1) for 100 km in Figure

2.2 is .751, but this is an unfair comparison because the area involved

there is 100xlOO km, whereas here a 100-km linear sample is used to

specify the cloud fraction for a 50x50 km area. A more apt comparison,

,ilbeit somewhat artificial, would be with the accuracy of a 200-km ran-

dom pass for the 100xlOO km area. An estimate of ti~is, from the theo-

retical results shown in Figure 2.3, is .871.

The principal findings of this section are:

A. When horizontal passes are used to specify the cloudiness

over a target area, it is more efficient to pattern and position the

passes than to sample along paths randomly located in the target area.

B. For a fixed total length of sampling path, an "equal-

area" pattern is more effective than the others examined here.
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SECTION 4. SAMPING IN VERTICAL PATTERNS

The comparisons drawn in Section 2.1.2 highlight the fact that

horizontal sampling is intrinsically inefficient, owing to the stronq

autocorrelation of cloudiness. For instance, sampling along 60 km

has the predictive power of only 5 independent point samples. The time

and fuel spent traversing the distance between points that are 12 km

apart are effectively wasted.

This observation inspired a series of experiments to measure the

relative efficiency of point samples in regular patterns, such as wou

result if the target volume were sampled in tight vertical spirals con-

nected by short horizontal segments at top or bottom, as illustrated in

Figure 1.1(C).

The 15 configurations tested are shown in Figure 4.1. For all,

the area is a 50x50 km quadrant of the basic cloud field; hence there

are 4 x 82 = 328 cases for each configuration. Corresponding to config-

urations #1-5 there are half-scale counterparts (#f-10) which arc. not

illustrated. In these, the identical pattern is arrayed over the co-cen-

tered square measuring 25x25 km. In all instances, including the half-

scale configurations, it is the cloud fraction of the 50x50 km area that

we are trying to specify from the cloud fraction of the point sample.

Patterns #12, 13 and 14 are "equal-area" in the sense introduced

in the preceding section. Each sample point is the center of one of the

N equal squares into which the quadrant is subdivided. As we shall be

seeing, these are the most efficient of the configurations tested.

For each configuration, there are 328 pairs of point-sample cloud

fraction, NP, and areal cloud fraction, NA. These were stratified

according to the point fraction in tenths, and a frequency distribution

was constructed for the areal fraction. A typical result, that for

configuration #13, is shown in Table 4.1. From these distributions the

sampling accuracy, P(.1), was evaluated for the 11 values of point frac-

tion, and these were then averaged without weighting.

In addition, for each configuration NA was linearly regressed on

NP, using the 328 pairs of values. Subsequently the regression euuations

were tested on the independent sample of 4 x 50 = 200 cases.
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TABLE 4.1 FREQUENCY DISTRIBUTION () h.' AREA], CLOUD FRACTION, %A, A:-

A FUNCTION OF POINT CLOUD FRACTION, NP, FOR (ONI"IGURA'I 1,)%

NO. 13.

NP arid NA are, respectively, point and area tractions (tenth,);
N is number of cases; P(.1) is -;amplinq jecuracy .

NA
NP 0 1 2 3 4 5 6 7 8 9 10 N P'(.1)

0 71 29 0 0 0 0 0 0 0 0 0 28 10

1 23 55 20 2 0 0 0 0 0 0 0 44 98
2 0 20 47 27 7 0 0 0 0 0 0 15 94

3 0 0 37 47 40 6 0 0 0 0 0 51 94
4 0 0 2 21 48 19 10 0 0 0 42 8H
5 0 0 0 10 35 25 25 5 0 0 0 20 85
6 0 0 0 0 13 23 35 28 3 0 0 40 86

7 0 0 0 0 0 5 27 41 27 0 0 22 95

8 0 0 0 0 0 0 7 43 33 17 0 30 93

9 0 0 0 0 0 0 4 4 21 57 14 28 92

10 0 0 0 0 0 0 0 0 0 25 75 8 100

The results of these analyses are plotted in Figure 4.2 as a func-

tion of the number of points in the sampling pattern. The sampling

accuracy, P(.1), is shown in the upper half of the figure, with the

points identified by configuration number. The 3 equal-area configura-

tions, which are connected by lines, are consistentiy the best in their

class.

In the lower half of Figure 4.2 the standard error of regression

is plotted. Again the 3 cases of equal-area patterns are superior.

The errors shown here are based on the dependent data, but as can be

seen in Table 4.2, there is insignificant difference between these and

the standard errors based on independent data. In fact, the two sets

of errors have identical averages, 1.0 tenths.

The data plotted in Figure 4.2, plus the correlation coefficients,

are tabulated in Table 4.2.

Results thus far in this section are based on the realistic assump-

tion that NP is qiven and NA is to be specified. The 328 pairs of values

for each configuration were also analyzed assuming NA qiven and NP to be

predicted. This was done to facilitate a direct comparison, in terms of

sampling accuracy, between these configurations and the same number of

random points. The results are given in Table 4.3, where the columns
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labeled B denote the unweighted averaqge accuracy of random patterns as

derived from the binomial distribution. With only a few exceptions,

which are mainly for the half-scale patterns, the random patterns are

less efficient than all of the systematic patterns. This suggests that

none of the full scale patterns suffers from loss of efficiency due to

spatial autocorrelation. That circumstance was to be expected for all of

the full scale patterns except, possibly, #'s 5 and 14, where the points

are separated by only 10 km. In Appendix C, the average value of the

"independence length" is found to be 12 km.

The values of P(.l) are different between Tables 4.2 and 4.3 be-

cause of the difference in the underlying conditional frequencies: NP

being the predictor in 4.2, NA in 4.3. NP is seen to be the more effi-

cient predictor for the larger samples, NA for the smaller.

As mentioned in Section 2, the standard error of estimate is some-

times used as the index of sampling accuracy. Table 4.2 lists both

1,(.1) and standard error of regression for the 15 configurations. Figure

4. 3 reveals that the two measures are well related here, but there is

no assurance that this relation is applicable to other sampling patterns.

The principal findings of this section are:

A. Point samples taken in well-distributed patterns are gen-

erally more efficient than random point samples. Consequently, the

binomial distribution can be used as a conservative estimator of the

expected accuracy of systematic patterns of point samples.

B. Equal-area point patterns are the most efficient of the

configurations tested.

12
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5. LOG,1S'TI CAL COMI'ARISoNS AND RECOMMENDATIOVNS

I omi"Iari son of llor iznt' l ind Ver-iA c.l :;,impli .m ,,. ti ,,.

In the two preceding sections it has been shown that the so-called

equal-area configurations, whether lines or points, are the most effi-

cient samplrs. It remains to consider the logistical efficiency of

lines and points; that is, to compare the fuel and time required to exe-

cute the horizontal and vertical sampling patterns that are the means of

achieving the line and point configurations.

The performance specifications assumed for the sampling platform

are shown in Table 5.1. These were provided by Dr. Gerald Seemann,

president of Developmental Sciences, Tnc., in response to a request for

generalized values that are compatible with capabilities of state-of-

the-art automatically piloted vehicles (APV's).

The volume to be sampled is 50 km across and from 1,000 to 10,000

feet in the vertical. The horizontal samples are taken at intervals of

1,000 feet, from top to bottom, for a total of 10 levels.

The horizontal patterns chosen for the "flyoff" are &'s 2 and 5 in

Figure 3.1, hereafter referred to as 11-2 and 11-5. Both yield a 100 km

sample at each level. H-2 is the efficient equal-area pattern, but it

has the drawback of requiring an extra leg of 25 km to close the pattern.

For present purposes we ignore any additional information that might be

gleaned from the bridging leg. H-5 is intrinsically less accurate than

H-2 but requires no extra leg.

The vertical patterns are 's 12 and 13 in Figure 4.1 - henceforth,

V-12 and V-13. They are, respectively, the equal-area 9-point and 16-

point configurations. An illustrated in Figure I.1, they are qener-

ated by flying alternate ascents and descents in tight spirals. A

standard-rato turn produces a radius of about 0.65 km for the spiral,

which is treated here as a vertical line. The spirals are linked at

top, and bottom by horizontal legs: 17 km long for V-12, 13 km for V-13.

Aqain, we ignore the p)ossibi lity of sampling on these legs.

The results of tile Iflyoff ire posted in Table 5.2, where the pat-

terns are listed in order oi decreasing time and fuel consumption.
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Because the horizontal patterns are flown from top to bottom, they en-

tail no ascents. The values of samplinq accuracy are derived from Tables

3.2 and 4.2, and are cited here only for intercomparison.

TABLE 5.1 PERFORMANCE POSTULATED FOR APV.

FLIGHT AIRSPEED VERTICAL RATE FUEL RATE

MODE (KTS) (FT/MIN) (LBS/HR)

HORIZONTAL 70 8
ASCENT 65 500 10
DESCENT 70 2000 5

TABLE 5.2 TIME AND FUEL REQUIRED FOR VARIOUS SAMPLING STRATEGIES.

H-2 H-5 V-13 V-12

PATTERN TIME FUEL TIME FUEL TIME FUEL TIME FUEL
SEGMENTS (HRS) (LBS) (HRS) (LBS) (HRS) (LBS) (HRS) (LBS)

HORIZONTAL 9.64 77.09 7.71 61.67 1.45 11.56 1.03 8.22
ASCENT - 2.40 24.00 1.20 12.00
DESCENT 0.08 0.38 0.08 0.38 0.60 3.00 0.38 1.38

TOTAL 9.72 77.47 7.79 62.05 4.45 38.56 2.61 22.10

96 89 93 81

As a class, the vertical patterns are the indisputable winners of

the flyoff. H-2 does afford the best sampling accuracy, but it is only

slightly more accurate than V-13 while it consumes more than twice the

fuel and time. Even 11-5, which is less accurate than V-13, takes three-

quarters more time and uses 60% more fuel. The most economical of the

four patterns, V-12, requires less than 60% of the time or fuel consumed

by V-13, but at a sizeable penalty in accuracy. However, as will be

seen below, even V-12 can be expected to achieve 90% accurIcy on averauc

in the real world.

5.2 Refined Estimates of Sampling Accuracy

There are two reasons why the estimates of sampling accuracy in

Table 5.2 are pessimistic: A) they are unweigjhted averaqes, and P) thy
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are for cloud levels rather than layers.

Why an unweighted average of P(.1) is an improper and, usually,

pessimistic estimator of sampling accuracy is discussed in Section 2

and Appendix B. The correct estimator of the sampling accuracy expec-

table in routine practice is a climatically weighted average. Figure

B-1 suggests that this estimator is strongly correlated with the degree

to which the frequency of cloud amount is U-shaped.

Climatically weighted averaqes of sampling accuracy for the 4 pat-

terns in the flyoff are listed in Table 5.3. Again, Ft. Rucker July

and Fulda 1-3 KIT January are the two cloud climatologies used for the

illustration. Now, even the "cheap" pattern, V-12, averages 90% in

accuracy.

TABLE 5.3 AVERAGE SAMPLING ACCURACY.

P(.l) (%)

WEIGHTED

SAMPLING PATTERN UNWEIGHTED FT. RUCKER FULDA AVERAGE

H-2 96 98 99 98
H-5 89 93 96 95
V-13 93 95 98 97
V-12 81 88 94 91

These values of accuracy are valid for sampling a level. In prac-

tice, a single cloud layer will be sampled at more than one level.

This is particularly true for vertical patterns, in which the levels

are as close as 33 feet if the sensor is sampled at the rate of I Hz.

The estimator for the cloud fraction of the layer is the average of

the cloud fractions for all levels sampled within the layer. Conse-

quently, the layer cloud fraction is normally more accurate than the

level fraction. Just how much more accurate is a question that could

be readily answered if the level samples were independent, but they

are not, owing again to the spatial coherence of cloudiness. It is

beyond the scope of our data to appraise quantitatively the improve-

ment due to averaqing of interdependent levels, but it can be taken

with confidence that the values in Table 5.3 are conservative estima-

tors for cloud layer; of substantial thickness.
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5.3 Other Advantages of Vertical Sampling Patterns.

Besides the distinct superiority in fuel economy, vertical sampling

patterns have two other significant advantagles over horizontal: qreater

accuracy both in estimates of cloud base/top and in total cloud amount.

In the present scenario, if the cloud sensor is sampled at 1 liz,

cloud heights are determined from the vertical patterns to within 10

feet on ascent, whereas there is an uncertainty of 4 500 feet in the

estimates of cloud base or top derived from horizontal samplinq.

From vertical samples, the total cloud amount (within the volume

sampled) is readily estimated, as simply the fraction of profiles on

which cloudiness is detected at any height. This estimate of total

cloudiness, as argued above with respect to a layer, is at least as

accurate as the estimate of cloud amount at a level, and probably more

so.

By contrast, estimating the total cloud amount from horizontal

samples depends on answering two sometimes difficult questions: how

many cloud layers are present, and how do they overlap? For samplinq

at 1,000-ft intervals it is reasonable, but not necessarily correct,

to assume that any cloudiness encountered on adjacent levels is part

of a single layer. Multiple layers are declared to exist only when

one or more intervening cloud-free levels are observed. As to the

overlap of multiple layers, one has little choice but to assume the

cloud elements in separate layers to be independent in their position-

ing. Clearly, both steps in the process are potential sources of si -

nificant error. For example, if 5/10 cloudiness is detected at both

of two levels, the estimate of total cloudiness will be either 5/10

or 8/10 depending on whether the two levels are assumed to be part of

a single layer or two layers are assumed to be presen)t.

5.4 Recommended Operational Procedure.

5.4.1 Choice of Sample Size.

The unequivocal finding of this section is that a vertical, equal-

area sampling; pattern is su;perior. In practice, then, the only choice

open is how many points (profiles) there will be in the pattern. This
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miost be dIecided is a compgromi: li 0Oncl uCcur,1C,/ d'; I I,, volume w ii l ,

which the cloud parameters are to be determined, and time,'fuel av.i 1-

able for sampling.

Save for the possibility ol using a faster APV, there are only two

means of reducing the time required to sample the cloudiness over a

target area: A) reduce the altitude range sampled; B) reduce the num-

ber of profiles (points) sampled.

Sampling time does not decrease linearly with reauction in alti-

tude range because, even in vertical sampling, the horizontal legs

account for a non-trivial fraction of the overall time. in Table 5.2

the horizontal time is at least 1/3 of the total for V-12 and V-13.

Nor does the overall sampling time scale linearly with the number

of points in the pattern. While the time required for the vertical

components is proportional to the number of points, the time spent on

the horizontal component scales almost like the square root of the

number of points. The reason for this is that, as the number of points

decreases in an equal-area pattern, the separation of the points in-

creases.

The penalty for reducing the number of profiles sampled is, of

course, reduced accuracy of the estimates of cloud amount. If the

sampling area is 50 km across, then the values of P(.1) cited in Table

5.3 are valid estimates for the areal cloud fraction at a level. How-

ever, as noted above, these are conservative estimates for the accuracy

of the cloud fraction of a layer or for the accuracy of total cloud

amount.

Accuracies achievable with samples sizes other than 9 or 16 points

can be derived by interpolation/extrapolation from Table 5.3. For

this purpose Figure 2.3(A) is a useful guide even though it depicts

the dependence of P(.l) on sample size for random point samples. In

:;ect ion I it is shown that random points ace a conservative estimator

h tle Iccoiracy for o tln-alea point atte rs.

Likewise, the et ect on P(.1) ol the _-limatic frequency of cloud

amount can be judged from Figure B-1, subject to recognition that the

absolutte values of [(. 1) ill 'iquro B-1 are tot , Io-p int rndom at tori.

5.4.2 Interpretation of Data.

Once taken and relayed to the ground, the data are readily con-
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vertible into the 3 operational parameters desired: A) total cloud

amount in the target area, B) base and tol. of each cloud layer pres-

ent, and C) cloud amount in each layer.

The inference of total cloud amount (within the altitude range

sampled) is so simple that it could easily be derived by an onboard

counting circuit. The total cloud amount is nothing but the frac-

tion of profiles on which cloudiness was encountered at any level.

Recognizing the individual cloud layers and fixing the base and

top of each is probably most easily done subjectively from a simple,

side-by-side plot of the profiles.

Once the base and top of a layer have been established, the cloud

amount for the layer is merely the average number of cloudy points

among all profiles and within the altitude range of the layer. This

average is the equivalent of estimating the cloud fraction for all

levels sampled within the layer and then averaging the level fractions.
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6. CONVERSION FROM CLOUD FRACTION TO CLOUD COVER

Throughout the report to this point we have been concerned with

estimating projected cloud fraction whereas the contract Statement of

Work asks for estimates of cloud cover. The two measures of cloud

amount may differ because the projected fraction, or earth cover, is

not sensitive to cloud thickness while the 3ides of distant cloud

elements do contribute to sky cover, the fractional obscuration of

the sky when viewed from a point on the ground. Therefore, one would

expect: A) the two measures to be identical whenever the earth cover

is either 0 or 10 tenths, and B) sky cover to be somewhat the greater

for intermediate values of earth cover.

To explore this relationship quantitatively, we exploited an anal-

ysis already performed on whole-sky photographs taken in conjunction

2
with standard sky cover observations. These observations were made

daily at 0900, 1200 and 1500 CST over a span of more than 3 years, at

the National Weather Service observing site in Columbia, MO. In the

original analysis, 2,805 photographs and matching observations of sky

cover were used to derive frequency distributions of cloud cover by

sky cover and by sector of the celestial dome.

Table 3 of the reference gives, as a function of sky cover, the

cumulative frequency of cloud-free fraction in a circle of 500 angular

diameter centered on the zenith. From this was derived Figure 6.1

showing the average sky cover, N, as a function of N(50), the cloud

cover of the 50 sector. Since the viewing angle of this sector de-

parts so slightly from vertical, the cloud cover for the sector should

approximately equal the cloud fraction, NA(50), of the sector. Initial-

ly, it was our further expectation that, when averaged over enough

cases, the cloud fraction, NA, of the total sky and NA(50) should be

almost equal. However, Figure 6.1 clearly invalidates this hypothesis,

for it would mean that total cloud fraction exceeds total sky cover in

the upper range of cloud fraction. A scale phenomenon is responsible

for tne fact that, even on average, NA(50) and NA are unequal. (Not

including the extreme points - N(50) = 0 and N(50) = 10 - which accout

2. Lund, I. A., D. D. 6rantham and R. E. Davis, 1980: Estimating
probabilities of cloud-free fields-of-view from the earth through
the atmosphere. Journal of Applied Meteorology, 19: 452-463.
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Figure 6.1. Mean Sky cover and Standard Deviation as a

Function of Cloud Cover of the Central 50 °0

Sector.
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for 75x, o the cases, each point in Fiiure 6.1 is based on an average

of just under 80 cases.)

The existence oi this. scale pheno)menon i.s most easily recognized

in the extreme cases. consider the cases fo whicr the narrow over-

eiod s di is c 'Iitsi. In at least SOme Of these c :;e, t here must i'

clOudiness elsewhere in the sky. Consequently the averaqe of N for

these cases must be greater than o. At the other extreme, the aver,,:,

of N for all cases in which NA(50) 1 must be less than 1. The ma;-

nitude of the phenomenon probably depends on the size of the sector,

which is 10% of the total sky for the 500 sector.

To quantify this scale phenomenon, we return to our own cloud

data. Figure 6.2 shows how the cloud fraction, NA, of the 100xl00 km

total area varies with NA(Q), the cloud fraction of the quadrant.

This plot, which is based on the 82 cases of the development sample

of cloud fields, confirms the expected shape of the relationship. The

line of regression is

NA = 1.18 + 0.735 NA(Q) (6.1)

with a correlation coefficient of 0.99.

Despite the difference in sector size - 25% for the quadrant vs.

t0% for the 500 sector - we assume that Eq. (6.1) holds for the de-

pendence of NA on NA(50). This enables Figure 6.1 to be converted

into Figure 6.3 depicting sky cover as a function of earth cover -

just the relationship that we have been seeking. The ± 1/10 confidence

limits for earth cover are also shown, and the sigma-bars in Figure

b.1 apply to the ordinates of the points in Figure 6.3.

Figure 6.3 shows that sky cover tends to exceed earth cover by a

small amount, particularly for scattered cloudiness. However, the dif-

ference is erratic and is comparable in magnitude to the noise level

of the data. Therefore, we feel that in practice there is no basis

here for drawing a distinction between sky cover and earth cover. In

other words, the proiected cloud fraction for the area as derived from

the line or point samples discussed in earlier sections should be tak-

er a; equall to the corresponding cloud cover.
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Figure 6.2. Cloud Fraction of Total Sky (NA) as a Function of
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Fiqjuro 6.3. Sky Cover as a Function of Earth Cover.

Lines Denote Confidence Limits of Earth Cover.
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APPENDI X A

OBSERVED 20111) 11EIJ)S

McIDAS (Man-Computer Tnterjc-tive Data Access System) i a na ini-

computer-based system developed at the University ot Wisconsin and

designed for the (lathering and display of meteoroloqical data. Among

its capabilities are the analysis and contouring of conventional mete-

oroloqical parameters (temperature, pressure, vorticity, atretni ine,

etc.), the plotting of temperature and moisture soundings, and tile

depiction of satellite imagery (visible and infrared). Nlottinq You-

tines are prompted via the terminal keyboard and displayed in c-olor on

a CRT.

As an interactive system McIDAS is a very powerful tool that can

be put to many varied uses. It is especially well suited for the in-

vestigation of clouds since both conventional data and satellite pic-

tures are available for scrutiny.

The cloud data of interest in this report were "half-mile" reso-

lution visible imagery. In particular the qoal was to ac'quire a rep-

resentative cross section of samples of single layer clouds that

covered the spectrum from nearly clear to nearly overcast sky condi-

tions.

Data collection commenced on December 10, 1980 and continued un-

til May 18, 1981. Since some satellite images had been archived on

Betamax tapes, it was possible to obtain samples from as far back as

May 6, 1980. In all, 132 separate cases were selected.

The usual operating procedure was to examine a satellite photo-

graph of low resolution in the morninq in order to identify areas where

sinqle layer clouds were located. During the cold weather months care

had to be exercised to insure that areas where snowcover was present

were not selected for samplinq. This precaution was taken to irevont

the possibility of ambiquity between reflections from a snow ;irl ce

and those from a cloud top. Table A-] shows the locations at which

the cloud samples were taken. A large proport ion of the cases was;

taken from the southeastern ttni ted States because of the snowce(vt

problem and the fact that, sine Ohor u;ers of McIDA. w ,t m. inly in-

terested in t he eastern half of Ilhe coutiItry, most satellito ictInre(s'

.1.



TABLE A-i. LOCATIONS OF SAMPLES.

Location Number of Samples

Florida 25

Virginia 9

North Carolina 9
Alabama 7
Georgia 6
Pennsylvania 5

Texas 5
Louisiana 4

Colorado 4

Tennessee 3
Mississippi 3

South Carolina 3

Ontario, Canada 3

South Dakota 2
Michigan 2

Ohio 2
New Mexico 2

New Hampshire 2
Minnesota 2
Montana 1
Alberta, Canada 1

Idaho 1
Kentucky 1
West Virginia I
Northern Mexico 1

Nevada 1
New York 1

Nebraska 1
Maine 1
Quebec, Canada I
Florida Keys 1

Illinois 1
New Jersey 1
Massachusetts I

Arkansas 2
Florida coastal waters 7

North Carolina coastal waters 4
Gulf of Mexico 3
New Jersey coastal waters I
South Carolina coastal waters 1

Lake Ontario 1

TOTAL 132
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were centered there.

Once a general area was selected from the low resolution sate]-

lite photograph, a hiqher resolut ion (nominal half-mile) image was in-

qested into Mc IDAS . Since reosolution is a function of dis anco from

the sub-satellite point, the actual resolution varied from .02 1)-."

miles in the north-south direction to .47 3-.860 miles in the east-wet

direction within the cases considered. From the high re;olution iimnage

an array of 135x]35 pixels was picked and this constituted a s;inq I

sample.

Local noon was often chosen as sampling time so that the s;un Would

be high in the sky and qround-cloud contrast would be a ma.'imurn. Ech-2 -

pixel in the satellite image has a brightness (watts cm ster.dian
- I

associated with it. After adjustment for calibration each pixol was;

labelled with a brightness count in the range 0-255. Since the purtose

of obtaining the satellite data was to produce a field that explicit ly

depicted the location of cloud elements, a threshold briqhtness for

cloud designation had to be chosen. Any pixel with a brightness above

the threshold was designated as cloud. A value of 100 counts was most

often chosen as the brightness threshold between cloud and no cloud

although the range was from 50-100 counts. Threshold brightness de-

pended on time of day of sampling (sun angle) and type and thickness

of cloud (reflectivity). Printed output of x's for clouds and blanks

for no clouds was produced for each sample at the time of selection.

There is no assurance, of course, that the subjectively chosen

threshold value of brightness precisely defines the cloud boundary.

However, since our purposes require only realistic patterns ot clnuds

and spaces, it matters little whether the assumed cloud boundary in a

particular instance lies somewhat inside or outside the actua1 bound-

ary.

Since visual inspection of the satellite imae , alots, js not ul-

ficient to guarantee that the cIotls were testr i ted to a sin, Iaye,,

several other sources of informition were consulted. Theseo ill(I ,ldod

circui "A" reports, synoptic' chart; and use (f McI AS to ,vet I', ;,t--

face weather observation on the ,-itellite imeiie. )cspit the ' e1 u-

tions there still can be no assut nC that all the ticcoud ;,Im lc'; wl'et

restricted to a single layer.

I |



Once a particular sample was selected, McIDAS wrote the bright-

ness distribution in the area of interest onto maqnetic tape. Further

processinq required use of a larqe mainframe computer (CDC 6600), for

which software was written for data conversion and unpacking. This in-

cludod a short program which calculated the distance between pixels and

then output the number of pixels necessary so that each sample area

would be approximately 100 km x 100 km.

Upon examination of the entire cloud field (via the printouts) a

suitable sub-area was chosen such that the correct number of pixels

for the 100 km2 area would be analyzed. The decision as to which sub-

area to choose was arrived at subjectively. Additional software was

developed for the data analysis.
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APPENDIX B

THEOR.T(AI, .;,WPINC MODF!.

Visualize a cloud layer covering some fraction, NA, of the tarqet

area. Suppose that some level within the cloud is sampled at a random-

ly positioned point. The probability that this point is in cloud is NA,

the chance of its being in clear air is (I-NA).

Now suppose that the level is sampled at n random points. The
n

probability that all points are in cloud is (NA) , that all are in
)n

clear air (1-NA) The probability, P(N), that any intermediate number,

N, of the n points is in cloud is given by the binomial distributin,-:

n! N n-N
P(N) = (NA) (1-NA) (B-I)

N! (n-N)!

In Table B-I is shown the binomial distribution of frequencies

(probabilities) corresponding to n = 10 and NA = .444. This distribu-

tion is labeled Fl. The distribution labeled F2, which was transferred

from Table 2.1, characterizes the cloud fraction of 60-km passes in one

of our observed cloud fields. NA = .444 for F2 also. The comparison

is shown merely for general interest. There is no reason to expect

close agreement between the two distributions.

TABLE B-1. FREQUENCY (F) OF CLOUD FRACTION (NP) OF A SAMPLE.

Fl is the binomial distribution for a set of 10 points.

F2, which was taken from Table 2.1, is for uO-km passes.

See text for P(.1).

NP (tenths) 0 1 2 3 4 5 6 7 8 9 10 P(.1)

Fl (%) 0 2 8 17 24 23 15 7 2 0 ) 64
F2 (%) 1 3 7 11 19 23 18 11 5 2 0 53

As a safety measure, tho applicability of the binomial distribu-

tion to our cloud data was directly tested and confirmed. Results; will

be illustrated later in this section.

The llxl] matrix that forms the main portion of Table R-2A i-

merely the evaluation of Eq. (B-1) for n = 10 and for ill inte,ir-l

10ths of NA. Each row states the fre(ttuency di :tr itul ion o ,.;am'
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cloud fraction, NP, corresponding to the particular value of areal cloud

fraction, NA. For convenience, the principal diagonal has been lined in.

We define an index of sampling accuracy, denoted P(.1), as the fre-

,pucncY o1 cases for which sample and areal cloud fraction agree to within

1/10 -- i.e., I NP - NA I - I. Thus, for each row in the matrix, P(.I)

is the sum of the frequency on the diagonal and the two horizontally

:ilanking values, except that there is but one flanking value when NA = 0

or 1. P(.1) is tabulated in the final column of Table B-2A. It is

symmetric about NA = 5, where it is at minimum. This illustrates a qen-

eral truth, namely, that cloud sampling is commonly least accurate when

the area is half clouded.

Another way to describe the basic matrix is that it embodies the

conditional frequency of sample cloud fraction, given the areal cloud

fraction. But the contract Statement of Work poses the converse cues-

tion: given the sample cloud fraction, what is the frequency distribu-

tion of areal fraction? It is possible to transform between the two

formulations with the aid of one of Bayes' rules, which will now be

derived.

Consider the joint frequency of NA and NP, P(NA,NP) - i.e., the

frequency of the simultaneous occurrence of specified values of areal.

and sample cloud fractions. This can be evaluated as the product of

the conditional frequency of NP, given NA, and the unconditional fre-

,uie:ncy of NA:

P(NA,NP) = P(NPINA) x P(NA). (B-2)

('Convorsely, the joint frequency of NP and NA can be expressed as

P(NP,NA) = P(NAINP) x P(NP). (B-3)

,itit, by lefinit ion, 1(NA,NP) = P(N|I,NA) , and from Eqs. (8-2) and

ik-i) it tollows that

P(NAINP) = P(NPINA) x P(NA)/P(NP). (B-4)

t'he (onditional frequency on the lefthand side of Eq. (B-4) is the

.noswcr to the SOW's question. The first factor on the riqhthand



TABLE B-2 CONDITIONAL FREQUENCY (%) OF CLOUD FRACTION (TENTHS),

BASED ON SAMPLE OF 10 RANDOM POINTS.

A. Given the Areal Fraction (NA).

1. Given the Sample Fraction (NP).

-;ee text for other details.

NAN _0 1__ 2 3 4 6 8 _ (_hA) I. .

0 100 0 0 0 0 0 0 0 0 0 (1 25 100

1 35 39 19 6 1 0 0 0 0 0 0 04 93

2 11 27 30 20 9 3 1 0 0 0 0 03 77

3 3 12 23-27 20 10 4 1 0 0 0 04 70

4 1 4 12 21 25 20 11 4 1 0 0 04 67

(A) 5 0 1 4 12 21 25 21 12 4 1 0 01 60

6 0 0 1 4 11 20 25 21 12 4 1 04 67

7 0 0 0 1 4 10 20-27_23 12 3 03 70

8 0 0 0 0 1 3 9 20 30 27 11 04 77

9 0 0 0 0 0 0 1 6 19 39 35 02 93

10 0 0 0 0 0 0 0 0 0 0 100 46 100

N 0 1 2 3 4 5 6 7 8 9 10 P(NP) P(.1

0 93 5 1 0 0 0 0 0 0 0 0 27 98

1 0'51 27 16 5 0 0 0 0 0 0 03 78

2 0 24 28 29 15 1 1 0 0 0 0 03 82

3 0 7 20 35 28 4 6 1 0 0 0 03 82

4 0 2 9 28 35 7 15 4 1 0 0 03 69

(B) 5 0 0 3 15 29- 9 29 11 4 0 0 03 67

6 0 0 1 5 16 7 36 21 13 1 0 03 65

7 0 0 0 1 6 4 30 28 28 4 0 03 85

8 0 0 0 0 1 2 17 24 42 13 0 03 s0

9 0 0 0 0 0 0 7 15 45 32, 0 02 77

10 0 0 0 0 0 0 0 0 1 197 47 9)9

TABLE B-3 SAME AS TABLE B-2S, EXT'EPT FOIR CI,O1D C1JMATO,(0;Y I:

FT. RUCKER, AL, IN JULY.

NA
N\ 0 1 2 3 4 5 6 7 8 9 10 P (NP) 11(.)

0 81"12 5 1 0 0 0 0 0 0 0 ] 93

1 0 37 38 17 6 1 0 0 0 0 0 04 75

2 0 16 35 28 15 5 1 ) 0 0 0 05 79

3 0 4 22 30 25 12 4 1 0 0 0 06 77

4 0 1 10 22 28 21 11 6 1 0 0 06 71

5 0 0 3 11 22 24]9 116 5 0 0 06 05

6 0 0 1 4 11 IS 2 2 .28 15 1 0 006W

7 0 0 0 1 4 9 17 33 30 7 0 07 SO

8 0 0 0 0 1 3 8 26 41 20 0 08 87

9 0 0 0 0 0 1 4 14 39 43 0 08 82

10 0 0 C) 0 0 o~0 1 48



side is just the conditional frequency in Table B-2A. If we assume

that the samplinq takes place randomly in time or on a day-to-day basis,

then the unconditional frequency of NA is nothing but the climatic

frequency, which is knowable. But what about the unconditional frequency

of sample fraction, P(NP)? This can be deduced by recognizing that a

sample fraction occurs only in conjunction with some area fraction. Thus,

the unconditional frequency of a particular value of NP is the sum of its

joint frequency with all possible values on NA. In other words,

P(NP) E P(NPINA) x P(NA) (B-5)
NA

and, finally,

P(NAINP) = P(NPINA) x P(NA) (B-G)
E P(NPfNA) x P(NA)

NA

Not( that P(NAINP) is dependent on the climatic frequency ot the

areal fraction. This climatic frequency, P(NA), is tabulated in the

next-to-last column of Table B-2A. The particular distribution is for

cloudiness in the altitude range 0-3 Kft at Fulda, FRG, in January,

1200-1400 LST. These values were derived by Lund using a model devel-

oped by Gringorten.
3

Table B-2B uses this P(NA) to construct from Eq. (B-6) a matrix

that is equivalent to the A-matrix except that now the sampled cloud

fraction, rather than the area fraction, is the predictor. Again, the

last column tallies sampling accuracy, P(.1), as a function of sample

cloud fraction.

To show how this second matrix depends on climatology, Table B-3

was evaluated for the areal cloud frequency at Ft. Rucker, AL, in July.

This is the B-matrix only, for the A-matrix depends only on the number

of points in the sample and is, therefore, the same for the two cases.

The climatic frequencies used for Table B-3 are listed in Tab'e B-4.

* A! previously noted, because Of roundoff, the sum of frequencies

is nut always precisely I00':..

3. Grir'jorten, 1.1., 1981: Climatic probabilities of the vertical
distribution of cloud cover. AFGL-TN (in press).



b-matrices fot a O-point tandom sampule were al-s() c'(n!.;I t uct,.,j )'

the 8 additional cloud climatoloqie.s listed in Table k-4, bit thev

will not be reproduced in detail here. ITsi ad , they will b So- ni.,-

rized below.

Althouqh the Grinqorten technique was not designed to treat ]),yetr.

of zero-thickness, it can be pushed formally to this limit, which in

the "level" of our sampling problem. Conseaently, evaluations t,)r cl

mid-level accompany each layer in Table B-4.

In Table B-4, "Mean" is the average cloudiness. "U" is an index

formed by summing the frequencies for NA = 0 and NA 1 1. It is i crude

measure of the "U-shapedness" of the frequency distribution, and its

siqnificance will become evident shortly. "Rank" is the order o! the

tabulated frequency distributions in terms of the U-index, with I as-

signed to the lowest value of U. Note that, as expectable, the distri-

bution for a level is consistently more U-shaped than that of the em-

bedding layer.

TABLE B-4 CLIMATOLOGICAL FREQUENCY (,) OF AREAL CLOU]DINESS.

Ft. Rucker is from the Uniform Summary of Weather
Observations.

Fulda and Adana are for January, 1200-1400 LST,

and were generated with the ;rinqorten te'hniu.

FT. RUCKER FUIDA ADANA/[N(i LLll

0-3 2 6-10 8 0-3 2 6-10 
NA JUL OCT KFT KFT KFT KFT KFT KET K]'T KIT

0 10 39 25 85 44 76 86 94 66 70
1 4 7 4 2 4 4 5 2 10 9
2 6 5 3 2 4 1 2 1 5 5

3 6 4 4 1 4 2 2 1 4 3
4 6 4 4 2 3 3 1 1 3 2
5 6 3 1 1 3 1 1 0 2 3
6 6 3 4 1 2 2 1 0 2 1

7 9 4 3 0 4 1 1 1 2 2
8 11 5 4 1 3 1 0 0 2
9 9 4 2 1 3 2 0 0 2 2

10 27 24 46 4 26 7 1 0 2 2

MEAN 6 4 6 1 4 1 U 0 1 1
U 37 63 71 89 70 83 87 94 68 72

RANK 1 2 5 9 4 7 8 10 3 6
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iow 1(.) varies witih cloud amounL is interesting, but to faciiiLate

comp arison at sampling strategies in terms of accuracy, it would be more

usefui to have some sort of lumped value. However, a simple average of

II(.I) stands to be misleading. Because P(.1) is a significant function

of cloud fraction, a straight average would not correctly depict the

accurlicy that could be expected from the particular strateqy if it were

to be used randomly in time or on a day-to-day basis. For a proper

estimate of this expectation, the average of P(.1) must be weighted by

the climatological cloud frequency. This means, or course, that the ex-

pected sampling accuracy varies with location, season, time of day, alti-

tude, etc., as well as with size of sample.

In Table B-5, "U" is the shape index mentioned earlier, and several

averages of sampling accuracy are presented for each of the 10 climatol-

ogies in Table B-4. P'(.1) refers to the accuracy index when areal frac-

tion is the predictor. 11(.1) is the same measure when the point-sample

fraction is the predictor. Without a superscript w, the average is un-

weighted. Note that the unweighted average of 1" (.1) is the same for

all 10 cases. This is as it should be, because P'(.l) depends only on

the number of points in the random sample, 10 here, and not at all on

the climatological cloud frequency. Note that P(.l) , the accuracy index

when the sample fraction is used as a predictor, is slightly lower on

average than P'(.1). On the other hand, the weighted mean is invariably

and significantly larger than either of the unweighted values. It is

this weiqhted value that is the meaningful estimate of average accuracy

expected in practice.

Strictly speaking, the two distributions for Pt. Rucker are inap-

propriate here because they refer to total sky cover. The other 8 dis-

tributions were custom-tailored to represent conditions in a layer or

at a level, which is what our scenario calls for. The justification

for introducing these "alien" datj is that they extend the range of I

available for Figure B-I, whiclh shows a clean relation between P(.1)

and U. The lowest point corresponds to P' (.1) , which may be viewed as

the weighted mean for a uniform dLit rihution. For such a distribution

U1 18%.

in Table B-5 there is no (1imat rloqicaliy weighted average for

F' (.I). The reason for this is tiat it is necessarily identical to

In forming an average, the ,;ame matrix elements are summed
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whetheri - or NP ia the predictor -namely dfI elements for whi'h

!NA-NP < . Basically the values in thes ixw)i tiorr; di+fer b(tween 1 tIR

A- and 8-matrices, but when wei(qhted by, the a:, ; r iate ci atol] iCd

frequency, what is summed is terms of the torm P(NIA) x P(A) or

P(AIP) x P(P). In either case, the result is P(A,P). In short, the

climatologically weighted mean of our index of sampling accuracy is

simply the sum of the joint frequency of NA and NP taken over i i-element-

wide band alon the principal diaqonal.

TABLE B-5 AVERAGED SAMPLING ACCURACY (%) FOR EACH OF 10

cLIMATOLOGICAL CLOUD FREQUENCIES.

Based on binomial distribution for n = 10.
See text for signit fcance of the several values
of P(.1)

STATION U P'(.i) P(.l) __._

Ft. Rucker Jul 37 79.9 79.4 84.8

Oct 63 81.0 91.6
Fulda 0-3 kft 71 80.2 92.9

2 kft 89 80.6 97.5

6-10 kft 70 80.5 92.8
8 kft 83 80.0 96.2

Adana/Incirlik 0-3 kft 87 71.7 97.3
2 kft 94 65.1 98.7

6-10 kft 68 79.5 93.4

8 kft 72 79.5 94.3

Mean 79.9 77.7 93.9

RMS A 5.39 17.9

Mean At 2.71 16.2

Ani noted earlier, an acid test was conducted to verity tl.it t it-

mean of random point samples from one of our cloud fields is di Iiihuted

binomially. The test was conducted separately for N = 5, 10, 20, am, t).

The procedure wi l be illustrated here for the case of N 10.

Ten )oints are randomly posit ioned in one ol the ]()IO100 km -1-(d

fields. NOP, the number of points wa] I 17,h within c'chud, i. - counted.
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Figure B-1.. Weighted Sampling Accuracy as a Function of

the U-Index of Cloud Frequency.

Based on Binomial Distribution for n =10.
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This constitutes I trial. The I ri I] is repeatte t (),.- total o o 0, I nd

the frequency distribution of NOP is evaluated. This is the experimental

distribution for the particular case. To match it, the binomial distri-

bution is derived for the observed value of NA, the areal cloud fraction,

and for N = 10.

All 82 cases in the development sample ot cloud fields are ,rocess.!

in this manner. The resultink 8,1 distribution:, of N A are ,Iroiipd 1,;

value of NA (rounded to tenths) and averaged. The upshot is an lIxil

matrix of the observed conditional frequency of NOP, (iven NA. (In the

general case this matrix is 11 x (N ).) A matrix (0 theoretical f r-

quencies is generated by performing the same operations on the binomial

distributions for the 82 cases. The sampllinq accuracy, P(.1), if; eval-

uated for each row in both matrices.

The differences between correspondinq elements of the two matrices

are shown in Table B-6. The close agreement is immediately evident,

considering that the row-sum for both mal-ices is 100 (within roundoff).

For more detailed inspection, the theoretical matrix here is almost

identical to that shown in Table B-2A, the difference being that the

rows here are averages of distributions based on generally non-integral

values of NA.

The last column in Table B-6 shows that, not suprisingly, the agree-

ment in P(.1) between observed aind thecretical distributions is also very

good.

TABLE B-6 DIFFERENCE BETWEEN FREQUENCIES OF OBSERVED RANDOM

SAMPLES AND I3LNOMIAL DISTRIBUTION Fi(R N - 10.

NA and NP are in tcith-; all other values are in 7.

NP
NA 0 1 2 3 4 5 6 7 8 9 10 P(.1)

0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 -1 0 0 0 0 0 0 0 0 0 -1

2 1 -2 2 -1 1 1 0 0 0 0 0 -1
3 -1 1 3 -1 -1 0 -1 0 0 0 0 1
4 -1 -2 -1 0 1 0 0 0 1 0 0 1
5 0 0 0 1 -2 0 0 0 1 0 0 -2

6 0 0 0 0 0 1 0 1 0 0 0 1
7 0 0 0 0 0 -1 0 -3 1 1 0 -2
H 0 0 0 0 0 1 1 -3 -2 2 -1 -3

9 i i 0 0 0 0 0 -1 2 -I 1 2

1 o 0 0 0 0 0 o ) 1 -1 0
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Similarly, we found excellent agreement between observed and theo-

retical frequencies for the other values of N tested: 5, 20, 30. Indeed,

the agreement was even better for the larger values of N. Consequently,

we conclude without reservation that random point samples taken within

cloud fields do follow the binomial distribution.
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APPENDIX C

ESTIMATING THE INDEPENDENCE FRACTION

If the cloud sensor is sampled at 1 Hz, a pass across the target

area produces more than a thousand points at intervals of less than

50 meters. How good a predictor of the areal cloud cover is the cloud

fraction of these points? As outlined in Appendix B, this question

could be readily answered in terms of the binomial distribution if the

points were independent, but samples so closely spaced are hiqhly

correlated. This interdependence inflates the variance of the point

fraction and reduces the accuracy of the pass mean cloudiness as an

index of area cloud cover. In terms of this variance, the pass behaves

as though composed of some smaller number of independent points. Using

the procedure described below, for each of the 82 basic cloud fields

we evaluated this reduced number, N', and the "Independence Fraction,"

IF, defined as N'/N where N is the actual number of points in the

sample.
2

For each case the variance, 0 , of the half-row cloud fraction
NFI

was directly evaluated for the 100xl00 km area. On the averaqe, these
2

fractions were based on 62 points separated by .82 km, and o was
N

based on 166 value-:.

Since the point vilue ": either 0 or I, the mean and mean square

of any collective of points are identical. Consequently, considering

the 10,000-plus points in the 100xl00 km cloud field as the entire

population, their variance is NA(I-NA) where NA is the cloud fraction

for the whole area which is, of course, the population mean. It is

2
known that the variance, aN'' of the mean of any subset consisting of

N' independent samples is I/N' times the point variance. We now ask

in each case: what value of N' yields the same variance as that ob-

served in the half-rows? This generates the following formulation for

the Independence Fraction:

NA (1-NA)
IF = N'/N = ((I-I)~2

N x 0~N

Using the half-row!; and Eq. (-1), we evaisated ]V foir eai<h of

the 82 cases. The aver.iqe value o1 IF was 0.090 with a standard

deviation of 0.054. In other words, in terms of their variance, th,
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half-row cloud fractions behaved as though based on fewer than 6 points

(.090 x 62 = 5.8).

An analogous concept is that of "Independence Unit of Length," IU,

which is the average separation of the hypothetical N independent sam-

ples. Since the half-rows are 50 km long in all of our cases, IU =

50/N' km. For all 82 cases the average of IU is 12.33 km with a stan-

dard deviation of 6.7 km.

Normally, the procedure above cannot be used in practice for want

of a sufficient number of passes from which to comp'ute the variance of

the pass mean. Hence we derived and tested several formulations for

approximating IF from single-pass data. All of these entailed evalu-

ating autocorrelation functions, and all resulted in values of IF that

were, on average, larger than the directly derived values discussed

above.

Since several of these approximations of IF assume that the se-

quence of samples forms a Markov chain, we tested this assumption by

evaluating the "Markov multiplier" for lags 2-6. The data used were

autocorrelations for £ = 1-6, based on entire rows, which average 124

points in length. For each lag the autocorrelation coefficient was

averaged for the approximately 83 rows in each case. The Markov

multiplier is defined as M= P9z/p where k is the lag. These mul-

tiples were then averaged over the 82 cases. The results are plotted

in Figure C-I. For a Markov sequence, M= 1 for all values of 9.

Figure C-1 shows that in our cloud samples, the autocorrelation func-

tion decays more slowly than Markovian.
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APPENDIX L

SOME REFLECTIONS ON HOMOGENEITY

The contract Statement of Work invited us, first, to work the over-

all problem assuming horizontal homogeneity of the cloud field and, then,

Lu ;onsidur and evaluate the effects (f non-homogeneity. As noted in

th,. overview, we ound it from the out.;ot unnecessary to limit our

purview to homoqeneous cloud fields. The theoretical approach made no

stipulation about the cloud field, only that the sampling points be ran-

domly deployed. The experimental approach was based on cloud fields as

nature served them up. Nevertheless, we have given some thought to the

pleasures of sampling a homogeneous field.

What is homogeneity? The Statement of Work gives no clue. As a

realization of a horizontally homogeneous cloud field, one might well

visualize a field of fair-weather cumulus, of size and spacing that are

variable but not too much so, and without any mesoscale structure. Any

sampling pass made through such a field - provided that it is sufficiently

long relative to the "scale size" of the field - should, in a statistical

sense, be equivalent to any other pass. The most primitive statistic is

the mean cloudiness along the path. Thus, we are led to the definition

that a cloud field is homogeneous if and only if all sampling passes of

sufficient length yield the same value of cloud fraction. Under such con-

ditions, the sampling problem is trivial. A single horizontal pass of

sufficient length yields a flawless estimate of cloud fraction for the

area.

While all horizontally homogeneous cloud fields are, thus, equally

easy to sample, it does not follow that all inhomogeneous fields are equally

difficult to sample. There is one, not-uncommon, situation that is partic-

,,larly troublesome. The field we describe is the one we call the "cloud

liont" field, which is shown in Figure D-I. Given an area of interest,

which we take to be d square, we break it into exactly two pieces, one

overcast and one clear. For further simplification, we assume that each

of the two pieces is a rectangle, the "cloud front" being the line between

them.
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Overcast

Cloud Front Lnt

Fiqure D-1. Geometry of the Cloud Front Sample.

We now perform straight-line sampling of this cloud field. We shall

assume that:

(1) the square is of lenqjth 2;

(2) the sample line of fixed lenqIth 1, ( 2) is centered in

the square, and takes no angular preference;

(3) without loss of qenerality, the areal cloud cover NA is

> .

Let the fraction of our straiqht-line sample that is in cloud he NI..

Some consideration shows that in all cases NA NI.! (If NA S 1 then

NA 2 NL always.) The question to be answered is this: with all aiieal

cloud covers NA beinq equally likely, find the probability P(.1) thit NI,

is within .1 of NA.

A short calculation shows that

Pr ( JNA-NIJ NA) -~cs (mini ] NAl (Dl-I)
I (NA-. 4)I

We can thus write

P(.1) fIr ((NA - Nf, .tNA) d (NA), ,and

P(.1) = -2 1 cos I (mir{1, ,x-l 4 ) dx. (D-2)

Ix

Inlln-l I I S ' ,. , . -



Wt' p( t t I i it i , I n( t(' cd;of; trorn ) to , i . I) i ,ilO d. , as w I

W(, have evaluattd iEi. (D-2) tor i succe;sion of pat [ Ienqths I,, obtain-

inq the graph shown in Fiqure D-2.

The "cloud front" field is probably the most extreme example of an

inhomogeneous field; yet it certainly occurs with no small probability.

If such a field is considered likely on a given day, Figure D-2 shows

that even with a straight line pass equal in lenqth to the scale of the

region in question (, = 2) , the probability of obtaining an accurate

sample is just over 50%. We note finally that if instead of samplinq

alonq a straight line an equal-area point sample s taken, the result-

inq P(.I) is larger and is equal to 60% for the 9-point sample, 80% for

the 16-point sample.

I
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APPENI)i X :

A NOVEL METHOD FOR EVALUATING THE ONE-LAG AUTOCORRELATION

In View of the simlel, dichotomous nature of clotid obs(rvations

it is po!;sible to derive the one-laq autocorrelation in an extremely

•; impLe lorm; namely,

P1 = I - q/nNL(l - NL) (E-1)

where g is the number of separate cloud groups in the series of obser-

vations of zeros (clear) and ones (cloud). Therefore g is the number

of discrete strings of ones. The remaining terms have their usual

meanino: n is the total number of observations in the series and NL

is the fraction which are ones.

Eq. (E-1) can be derived by moan.s ol two separate approaches.

One makes use of probability concepts and the other consists essentially

of direct substitution into the defininq expression for the one-lag

autocorrelation. Both approaches will be illustrated since they each

ol ter somewhat different insights into the nature of Eq. (E-l).

We have a series of uniformly spaced observations along a straight,

horizontal line whose elements consist of zero (clear) or one (cloud).

Let P(Ol) be the conditional probability of a zero given a one

as the antecedent observation. Let P(ll) be the conditional probabil-

ity of a one given a one as the antecedent observation. Then it is

apparent that

(l(1) = I - P(o0l). (E-2)

P(l11) times the number of ones in the series is merely the sum

of the one-lagged products. That is,

n NL P(lj) = Ey iyi+1  (E-3)

t h
where yi is the i observation. Thus,

NL I(11I) = yiyi+ (E-4)

where tho operation ( ) indicates an averaqe over the domain.

From the definition of the one-laq autocorrelation, pi,
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(Yiyi+l - yiyi+l)/a l (H-b)
I Yi+I

2 2 2
where o 2 0 = is the variance et t hc !;t ot observat ic:;,

wobany. y 002+Y2(2 y2i i+1 Y- -2 -2 2 --2 -2
we obtain Qc~ y-)~

-2 -2 2)

i - 1 -(y- Y) + y 2 P (NI- [Ni 2 ) + (NlI 2

Therefore, from Eq. (1-4)

P(1) (1 - NL)p 1 + NI, = D + NL (I - p 1 ). (E-6)

However, P(011) may be expressed as

P(01l) = : f(x) / xf(x) (-7)

x x

where f(x) is the frequency of a string of x ones. Therefore E f(x)
x

is the number of separate cloud group s (q) , and x xf(x) - n N!.

The latter quantity is of course the total number o! one- in the series

of observations. Thus we have,

P(0l) = q/n NT. (E-8)

but from Eqs. (E-2) and (E-6) we have

P(0Jl) = 1 - 1 - NL(l - 0 I ) ( - 0 1) (I - NL).

Therefore, we have

0] = q/n Nh l -N ).( -)

The above exp ression for the one-lag autocorrelation can be derived

directly from the standard definition of pI' Eq. (1-5). It we ,rde are-

ful to define the domain of the operator ( ) so as to account for ('!Id

effects, then the domain of i in 1.:q. (E-5) is i - 1, 2, ... , n-I.

In terms of quantities which have already been defined,
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yI .y (nN1, - q)/n

Yi +l NL

- 22 2 2 2
0 2 02-i " Yi - - - NL - (NL) (E-ll)

Yi+l Yi1

Substitutinq Eq. (E-)) , ('Z-l0) and (E-lI) into Eq. (E-5) we obtain

Li-]) direct ly,

0 nNL - ) / n- (NL) 2] /[NL -(NL) 2 q=~ /nNL (1- NfL.

In Eqs. (E-9), (E-10), and (H:-1l) the expressions are indicated as

approximate. The approximation arises because the domain of the

operator is i = 1, 2, ..., n-i, whereas in Eq. (E-9) we have divided by

n. Similarly, in Eqs. (E-10) and (E-11) NL is the cloud fraction for

the entire series of n observations, whereas Yi and yi+l are averages

over only (n-l) observations. The approximation however is certainly

very good for all but extremely short series of observations.

Therefore, in any series, where the elements may be expressed as

zeros or ones, the simple relation for the one-lag autocorrelation,

Eq. (E-l), may find useful application.
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APPENDIX F"

ADDITIONAL THEORETICAL SAMPLING DISTRIBUTIONS

Here we present some simple sampling models examined during the

course of this contract. These models have assisted our understanding;

and may possibly be of value in future related studies.

Because many atmospheric processes are known to be Markovian in

nature we early on made a simple Markov model and studied its character-

istics. While the empirical data w, later uolle.ted through M IB AS

appear to be samples of a sub-Markovian process, nievertheless the

Markov model is a reasonable one and does provide insight. We procecd

to outline its structure.

LetIX n, n = 1, 2, 3, .... represent the sequence of zeros and ones

returned by a straight line pass of the APV. If the areal cloud frac-

tion is NA then for any i the probability that X. = 1 is NA and the1

probability that X. is 0 is 1 - NA. We wish to introduce the notion of1

persistence into our model. Assume that the first N values of the se-

quence are known. We model the conditional probabilities of Xn+ 1 as

follows, introducing persistence through the parameter a, with

0 L a < 1:

Pr (XN+ = 1 XN = 1) = at + (1-(X)NA

Pr (XN+ = 0 1 N = 1) = (1-a)(1-NA)
N~l XN(F-l)

Pr (X = 1 X = 0) = (I-a)NA

N+l N

Pr (X = 0 Xn = 0) = a + (1-a) (1-NA).

It is possible to think of sequences whose (N+I) s t values are

dependent upon all of the valuesIX }, n = 1, 2, .... N. The fact that

the probability law for XN+l in our model Eq. (I'-i) depend.s only on Ile

last value XN makes our process Markovian. It should be clear that once

the value for X 1 is given, Eq. (F-1) inductively determines the probabil-

ity law for X2, X 3, X4, ... To start the process it is natural to take

Pr (X 1) = NA and Pr (X1  0) = 1 - NA.
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We have now completely specified our (Markovian) model Eq. (F-1).

It is inot hard to show that for any value of N, the expected value of

XN i:; NA. Furthr, the one-laq auitocorrelati on of the process is ').

Hecause the one-]aq autocorrelation is called p in earlier sections

we shall here make the identification u i p. It is not hard to see

that if a = 0 then the X N's are completely independent. As a increases

toward 1 the effect of XN on XN+1 increases, until in the extreme case

a = I all of the XN s are equal to the value of X I . It is for this

reason that a is considered to be a measure of persistence.

In operational practice a sample sequence of zeros and ones is

provided by the APV, and we wish to draw inferences from it. Before we

can do so, however, we need to know more about the model Eq. (F-i); in

particular we ask first: given that we know both NA and p (=a) and

that we make a total of N observations, what is the probability that

exactly k of our observations are equal to one? Let us write this

probability as Ns(k; NA,p). We have written a program called PROB

which calculates S. It is worthwhile to note that

N
N1N S(k; NA, p) = 1 (F-2)
K=

NS(k; NA, 0) () NAk (1-NA) N-k .  (F-3)

Eq. (F-3) is a statement of the fact that in the limiting case p = 0

our model reduces to a sequence of N independent trials of the bi-

nomial distribution with parameter NA.

For the general case p y 0 it is clear that persistence makes our

sample of N observations dependent on one another. We ask as in pre-

vious sections: find an appropriate measure of the amount of independ-

ent information contained in any sample sequence. We make this auestion

more explicit: using the chi-square test, find the value of N' so that

NS(k; NA, 0) best fits NS(k; NA, p).

The following table gives the results for the case N = 100; for

each (NA, p) pair, the entry is the value of N':

71



TABLE F-I. N' AS A FUNCTION OF NA AND p (N 100).

NA .1 .2 .3 .4 .5 .6 .7 .8 .9

p
.1

.2 750 >50 >50

.3

.4 44 43 43 43 43 43 43 43; 44

.5 35 34 34 34 34 34 34 34 35

.6 25 26 25 25 25 25 26 26 25

.7 15 18 18 18 18 18 18 18 15

.8 14 10 11 12 12 12 12 10 14

.9 17 8 5 4 4 4 4 8 17'..

We now turn the problem around; instead of a probability law being

given, a sample of N observations is considered (liven. In addition, the

climatology function CP(2.), Z = 0, 1, 2, ... , 10 = the climatological

probability of the cloud cover being 1/i0 is assumed to be given. From

the sample we can obtain an N' in various ways, including, for example,

using the above table. As in Appendix B, Bayes' Theorem then provides

the conditional probabilities Pr (NAINL) = the probability that the actual

cloud cover is NA given the observed cloud traction NL. The computer

program NPRIME performs this calculation for a given climatoloqy, N',

and observation, NL. From this output confidence levels may be obtained.

There is another (related) way to use Bayes' Theorem withouit calcu-

lating an N'. Given a sample of N total observdt ions, calculatu the ob-

served cloud fraction NL and RHOSAM, the sample one-lag autocorrelation.

Just as Bayes' Theorem can be used to work from {NS(k; NA, 0) ,NA

= 0, .1, ..., 1.0 together with a climatology, it can also be used to

work from{NS(k; NA, RHOSAM)},NA = 0, .1.,..., 1.0 and a climatology,

calculating as above Pr (NAINL). Program DPROB performs the calculation.

The final section of this appendix addresses the question of how to

proceed to obtain confidence levels from a sampl, sequence when no (1 im-

atology is available. One method is to apply ;.u:;' maximim like, i},)(1_
4

estimator to estimate unknown parameters.

4. Larson, I., 1969: Introduction to Probability Theory and Stat-stcal
Inference. John Wiley & Sons, pp 253. -_
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Assume that we are qiven a sample sequence I X | of N observations.

Proceeding as before, we can reduce to N' independent Bernoulli trials

in a variety of ways. If N' is large enough, it can be shown that if

we want to find P1 and P2 such that

Pr (P1 < NA < P 2 1 - f, where NA is the (F-4)

(unknown) cloud cover, then

pi = NL - ---- /NL (I - NL) and (F-5)

P2 = NL + Z v'NL (I - NL), where ZI_-/2 (F-6)

is the 100 (1- /2) percentile of the standard (mean 0, variance i) nor-

mal distribution function and N1. is the observed cloud fraction of the

given sample.

Our last technique combines the notion of a Markov process with

Gauss' maximum likelihood estimator.

Assume that we are given a sample I Xn lof N observations of some

unknown Markov process. Can we find that Markov process which is most

likely to have generated our sample set of observations? We have done

so, stating the result below.

Given X , letn

C00  # of times a 0 tollows a 0.

CO1 # of times a 1 follows a 0.
0 (F-7)

C -' 
# of times a 0 follows a 1.

CI -= # of times a 1 follows a 1. 1

C 1 0  C 1

let A = and B = . (F-8)
C .l1 C 00

Define CI. most likely NA,

IIOE most likely p. (F-9)
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A calculation shows that

1 4 A
CL = B---(-

A + B + 2AB

I - Ali
RHOL -(1 A)(1 - B) (I-I l)

Given the sample I X I of N observations, one (--an write in

analytical form the probaoility function 1P = P(NA,p) that is the prob-

ability of obtaining the sequence I Xn I from the Markov process (NA,()).

One then finds through elementary calculus that P is maximized at

(CL, RHOL), yielding the above result. It is not unreasonable to expect

that levels of confidence for this result can be obtained from the func-

tion P. We have thus outLined a scheme whereby under the Markov assump-

tion and with no climatology one can pass from a line sample to tile mo!;t

likely generating Markov process. Work that miqht be done in the future

includes finding the confidence interval for this result.
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